
Just Enough Eclipse

What is Eclipse(TM)?
Eclipse is a kind of universal tool platform that provides a feature-rich development
environment. It is particularly useful for providing the developer with an Integrated
Development Environment for the Java platform. Its open and extensible nature has made
it one of the most popular IDE tool.

Why is it important?
It has already been recognized that an IDE is an indispensable tool for use in the
development lifecycle. An IDE can definitely cut down development time and reduce
development effort as it provides an integrated environment for writing codes, compiling
programs and debugging. Of course the modern IDE like Eclipse provides much more
than that. Features like Refactoring, integration with Application Servers, generation of
documentation and Unit Testing are also very important in expediting the development
lifecycle. It is thus important before the start of a project to carefully consider the use of
an IDE tool.

What is this tutorial about?
The main aim of this tutorial is to ensure that you have “JUST ENOUGH” knowledge of
Eclipse. It does not intend to give you all the nuts and bolts of all about Eclipse. The
documentation/help in Eclipse provides excellent materials in that aspect. This tutorial
aims to provide enough material for you to have a basic understanding about Eclipse and
be able to move on to the other tutorials with regards to OpenEnterpriseX. In the
subsequent tutorials, when development with components like EJB(Enterprise Java
Beans) or Servlets, Eclipse will be assumed to be the integrated development
environment to be used.

This tutorial will go through the creation of a Project, a Folder and a Java Class. Some
other aspects like content assist will also be introduced.

Step 1

Goto the Start Menu->OpenEnterpriseX->Eclipse
If this is the first time you launch Eclipse, you will see the following screen. The screen
allows you to set the Workspace for Eclipse. A Workspace is a default directory used by
Eclipse to store project files. Use the default directory provided and Click OK. If you do
not like to set the Workspace everytime you start Eclipse, you can check on the 'Use this
as default and do not ask again' checkbox.

Step 2

This is the first screen that you will see after Eclipse is launched. For those who are
interested in exploring Eclipse in detail, simply explore the different sections like the
Overview and Tutorials. The “Java Development User Guide” in the Help menu is
especially useful. However in this tutorial we will focus on the Just Enough aspects of
Eclipse.

Step 3

In this and the remaining sections, we will cover how to create a Java Class and run it.

First of all, you need to create a Project. A Project is like a logical grouping of related
files with the necessary environement settings like the libraries to use. It is the basis of
working with the source files.

Create a new Project by going to New->Project as shown in the diagram below.

Step 4

There are two types of Project, Java Project and Plug-in Project.
A Plug-in Project is only used for developing plugins for Eclipse. As mentioned
previously, Eclipse is an extensible platform for the development of plugins. However,
we are only interested in creating a Java Project for now.

Click on Java Project and Click Next.

Step 5

We will name our project MyFirstProject and place it in the default workspace. We will
also use the project folder as root for source and class files.

Step 6

The New Java Project Wizard appears. Below is a brief description of the different
options and tabs in this page of the Wizard.

Source – For specificying the folder for storing source codes (.java files). Each source
folder can define an exclusion filter to specify which resources inside the folder should
not be visible to the compiler.

Projects – Required projects on the build path. Adding a required project will result in all
its classpath entries marked as 'exported' to be added to this project.

Libraries – For specification of libraries that will be used in this project. For example, if
the project is going to interact with a database then the JDBC drivers can be specified
here.

Order and Export – Build Class Path Order and Exported Entries
During compilation, the build class path is used to search(in the particular order) for
classes referenced by the source code of this project. Each project will have it's own build
classpath.

Exported Entries are class path that are visible to projects that require this project.

Default Output Folder - The compilation output (eg classes) will reside in this folder.
Java files in the source folders will be compiled to .class files and written to the output
folder. The output folder is defined per project except if a source folder specifies an own
output folder.

The information above can be modified even after a project is created. Simply go to
Project->Project Properties->Java Build Path to make the changes.

Leave everything as default for now.

Step 7

The dialog will prompt you whether to switch to the Java perspective. As we are going to
do Java development, click on the Yes button.

A perspective defines a set of views to provide a set of capabilities for the developers. For
example, a Java perspective is geared towards allowing developers to edit Java source
files while the Debug perspective contain views and capabilities for debugging Java
programs.

A developer can also choose to define his own perspective.

Step 8

This is what you will see after the creation of a project. On the left hand side is the
Package Explorer. It shows the source folders, the referenced libraries and Java files
hierarchy of the Java project. We will explain the different views in more details later.

Step 9

Next, create a new Folder by going to File->New->Folder

Typically you will arrange your project in a manner like com.companyname.projectname
kind of folder structure. This means there will be a com Folder and inside a subfolder call
companyname which includes yet another subfolder projectname.

An example is org.openEnterpriseX.openEnterpriseProject.

Step 10

First select the parent folder by clicking on 'MyFirstProject'. Add the subfolder name as
myPackage.

Step 11

The last part to create is the Java Class.
Goto File->New->Class

Step 12

Enter the Source Folder and Package. The Java file will be stored in
MyFirstProject->myPackage. Specify the class name as myClass. Leave the
modifiers of the class as public. Eclipse allows the specification of a
superclass or interfaces implemented by this class in this wizard. It
also allows the specification of the stubs to create. Make sure to
check on 'public static void main(String argv[])'. Leave the other
stubs options as they are. Codes will be generated based on what is
specified here later.

Step 13

Key in the source code in the Java editor as follows

public class myClass {
public void printHelloWorld()
{

for (int x=0;x<5;x++)
System.out.println("Hello World:"+x);

}

public static void main(String[] args) {
myClass mc = new myClass();
mc.printHelloWorld();

}
}

While you are keying the source code, take note of Content Assist
feature. For example when you are keying in 'System.out.println', upon
keying in 'System.' the editor will prompt you to choose a method name
from a list of methods. Upon choosing the method, the editor will auto
fill in the rest of the line of code for you. To bring up Content
Assist manually, press the 'Ctrl Space' key. This is a very useful
shortcut that can help you reduce development time.

Step 14

Upon creation of the Java class, the Java Perspective appears. Below is
a description of the different components.
Package Explorer
The Package Explorer shows for each project, the source folders and
referenced libraries.
Outline
On the right hand side is the Outline View. This view list structural
elements of Java source files for example variables, method names,
package declaration and import declarations.
Java Editor
In the middle is the Java Editor which allows the editing of Java
source files. Different elements in the Java source file are rendered
in different colors.
Help
On the right hand side is also the Help View. This view lets you search
and view help documentation.
Problems
The problems view shows all errors made in the source code.

On the top right hand corner, there are two buttons, one for Resource
Perspective and one for Java Perspective. Eclipse has been designed to
be a platform for different plugins. Each plugins might come with
certain views to display specific information. A perspective allows you
to customize the views associated with it. Thus when a perspective is
selected, the necessary views are brought up for display. It is
possible to see a list of other perspectives by going to Window->Open
Perspective. To customize the perspective, goto Window->Customize
Perspective.
Click on the Resource perspective and see the changes to the views.

Step 15

Explore the Resource Perspective and switch back to the Java
Perspective before continuing.

Step 16

After keying in the source code, make sure there are no errors in the
Prolems View. If everything is correct, Right click on
myClass.java->Run->Run Java Application (in the Package Explorer) to
run the Java program we have written. If there are problems in the
Problems View, click on the problem and check the syntax of the source
code entered. If there are any errors, correct the errors before
proceeding with the above.

Step 17

If you have not saved your files, Eclipse will prompt you to save them.
You will notice that you did not perform any manual compilation. The
reason is Eclipse depends on an incremental compiler. At the time when
you are keying your code, it already starts compiling the code. Any
errors will be flagged out immediately in the Problems View.

Step 18

The results are shown in the console.

You have completed the first tutorial in creating a runnable Java
Class. At the same time you have equipped yourself with enough
knowledge about Eclipse to move on to the subsequent tutorials.

